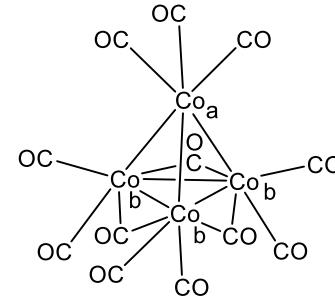
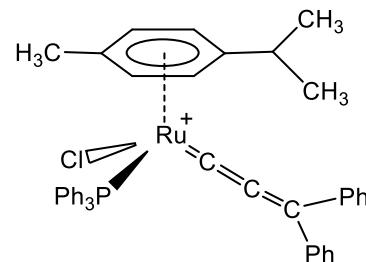
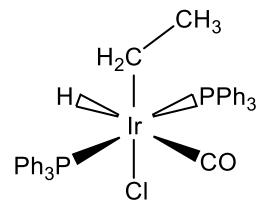
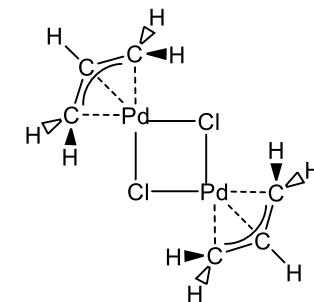
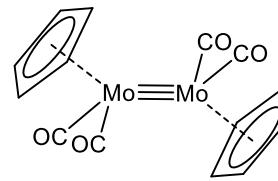
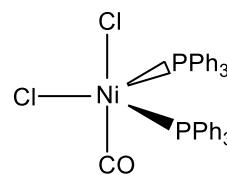
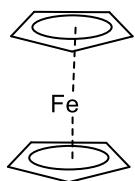


Exercises (I)

(1) Draw structures and give the formal oxidation state and valance electron count of the metal for the following compounds:

- a) $[\text{Mo}(\eta^6\text{-C}_6\text{H}_6)_2]$
- b) $[\text{Cp}_2\text{ZrCl}(\text{OMe})]$
- c) $[(\text{PMe}_3)_2\text{Pd}(\eta^3\text{-C}_3\text{H}_5)]\text{Cl}$
- d) $[\text{Re}(\text{CO})_5\text{Et}]$
- e) $[(\text{dppe})\text{Pt}(\text{OMe})_2]$ (dppe = $\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2$)
- f) $[\eta^5\text{-Cp}^*\text{Ru}(\text{PMe}_3)_2(\text{Cl})]$ ($\text{Cp}^* = -\text{C}_5\text{Me}_5$)
- g) $[\text{CpW}(\text{PMe}_3)_3(\text{H})_2]^+$

Exercises (II)

Give the formal oxidation state and electron count of the metal for the following compounds

Exercises (III)

Draw the structure of a complex of empirical formula $[\text{Re}(\text{CO})_3\text{Cl}]$ that obeys the 18 electron rule.